• NPL-Home
  • About Us
  • Accelerators
    • Betatrons
      • Plasma Betatron Coil Form: Design and Construction
      • Pulsed B-Dot Measurement
      • CW B-Dot Measurement
      • First Beam Attempts
    • Cyclotrons
      • 12-Inch Cyclotron
      • Axial Betatron Motion
      • Floating Wire Technique
      • 12-Inch Cyclotron Papers
    • DC Potential Drop
  • Experiments
    • Alpha Spark Detector
    • Diffusion Cloud Chamber
    • Wilson Cloud Chamber
    • Deuterated Target Preparation
    • Gamma-Gamma Coincidence
    • Measurement of excited Np237 half-life via the alpha-gamma coincidence method.
    • MUONS
      • Life & Times of a Muon
    • Neutrons
      • Neutron Detection with He-3
      • Neutron Induced Gamma Rays
      • Neutron Diffusion Time Measurement
    • Photography
      • AVCO Rotating Mirror
      • Dark Room
      • Rotating Drum Camera
      • Schlieren Photography
      • Fast Flash Photography
      • X-Rayted Photos
    • Rutherford Scattering
    • Thermoluminescence
  • High Voltage
    • Blue Thunder – An Electrolytic Cap Bank
    • Jacob’s Ladder
    • Krytrons
    • Marx Generator
    • Electric Watermelon
    • Quarter Crushing
    • Tesla Coils
      • Jay’s Tesla Coil
      • Variacs
  • History
    • Heisenberg Cube
    • The Kerst Collection
    • Koeth Collection – Consumer Products
    • Koeth Collection – Radiation Detection Instruments
    • Koeth Collection – Reactors & Weapons
    • Koeth Collection – Games & Collectables
  • Plasma
    • Fusors
      • FUSOR I
      • FUSOR II
      • Scott’s Fusor
      • Fusor Simulations
    • The Mirror Machine
    • Pinch Machines
      • Linear Pinch
      • Toroidal Pinch
      • Pinching
  • Spectroscopy
    • Alpha Particle Spectroscopy
    • Gamma Ray Spectroscopy
      • HPGe Gamma Ray Spectroscopy Education
      • HPGe Systems
      • Cosmogenic Be-7
      • Trinitite
      • Autunite
      • NAS Wildwood Mystery
      • Tc-99m : Cardiac Stress Test
    • Software & Hardware
      • Amateur Canberra Spectroscopy System
      • Antique MCA
      • DIY Matlab MCA
      • NIM Modules
        • Canberra Nim Modules
        • ORTEC Nim Devices
      • Refurbishment of LN2 Dewars
  • Search Icon

NPL

Nuclear Physics Lab

NPL
Axial Betatron Motion

Axial Betatron Motion

Author: Tim

This experiment shows the effect that shaping the magnetic field has on focusing the cyclotron’s beam. If the beam wanders off of the mid-plane, the magnetic field pushes it back, but of course it then overshoots and goes below the mid-plane. The magnetic field pushes the beam back up, and so it goes. The beam oscillates about the mid-plane in the vertical (axial) direction as it spirals out in the horizontal plane. These images show that action and is one of the most fundamental accelerator demonstrations this cyclotron provides.

This paper describes the first observation of betatron motion in our cyclotron.

This paper goes more into the details of the betatron motion demonstrations with the 12-Inch Cyclotron

View into the cyclotron chamber through the “rectangular port.”
When beam is on, and the cyclotron is tuned up, the green light from the phosphor screen can be bright enough to shine light out.
This is what the human eye would see, just a dot, or sliver on the edge of the phosphor screen. The beam image is its position profile at that particular radius.
If you set up a camera to take a long exposure and slide the screen in-and-out during beam on time, the vertical motion of the beam will be “painted in.”
A typical setup.
The painted in image as seen from a few steps back.
Here is an older photo of Tim sliding the radial probe during the image acquisition.
Tim’s favorite betatron motion image, this was taken will using the “good” weak focusing pole tips.
This is what a normal ion source looks like during cyclotron operation. Ions are being sprayed into the chamber in the mid-plane.
This was a specially built ion source chimney with a major vertical offset, which intentionally gives the ions a vertical error.
This image is the result of that large initial vertical error while operating with the “good” weak focusing pole tips.
This image is the result of that large initial vertical error while operating with the AKG270 spiral poletips.
Here the cyclotron is outfitted with the “bad” weak focusing pole tips.
The “bad” weak focusing poletips cause the beam to severely axially “blow up” and strike the cyclotron chamber DEE or lids and be lost. This is known as the Walkinshaw resonance.
Back
  • NPL-Home
    • About Us
    • Accelerators
      • Betatrons
        • Plasma Betatron Coil Form: Design and Construction
        • Pulsed B-Dot Measurement
        • CW B-Dot Measurement
        • First Beam Attempts
      • Cyclotrons
        • 12-Inch Cyclotron
        • Axial Betatron Motion
        • Floating Wire Technique
        • 12-Inch Cyclotron Papers
      • DC Potential Drop
    • Experiments
      • Alpha Spark Detector
      • Jay’s Diffusion Cloud Chamber
      • Tim’s Wilson Cloud Chamber
      • Deuterated Target Preparation
      • Gamma-Gamma Coincidence
      • Measurement of excited Np237 half-life via the alpha-gamma coincidence method.
      • MUONS
        • Life & Times of a Muon
      • Neutrons
        • Neutron Diffusion Time Measurement
        • Neutron Induced Gamma Rays
        • Neutron Detection with He-3
      • Photography
        • AVCO Rotating Mirror
        • Dark Room
        • Fast Flash Photography
        • Rotating Drum Camera
        • Schlieren Photography
        • X-Rayted Photos
      • Rutherford Scattering
      • Thermoluminescence
    • History
      • The Kerst Collection
      • Heisenberg Cube
      • Koeth Collection – Consumer Products
      • Koeth Collection – Radiation Detection Instruments
      • Koeth Collection – Reactors & Weapons
      • Koeth Collection – Games & Collectables
    • High Voltage & Pulsed Power
      • Blue Thunder
      • Jacob’s Ladder
      • Krytrons
      • Marx Generator
      • Electric Watermelon
      • Tesla Coils
        • Jay’s Tesla Coil
        • Variacs
      • Quarter Crushing
    • Plasma
      • Fusors
        • FUSOR I
        • FUSOR II
        • Scott's Fusor
        • Fusor Simulations
      • The Mirror Machine
      • Pinch Machines
        • Linear Pinch
        • Toroidal Pinch
        • Pinching
    • Spectroscopy
      • Alpha Particle Spectroscopy
      • Gamma Ray Spectroscopy
        • HPGe Gamma Ray Spectroscopy Education
        • HPGe Systems
        • Cosmogenic Be-7
        • NAS Wildwood Mystery
        • Autunite
        • Trinitite
        • Tc-99m : Cardiac Stress Test
      • Software & Hardware
        • Refurbishment of LN2 Dewars
        • DIY Matlab MCA
        • Amateur Canberra Spectroscopy System
        • Antique MCA
        • NIM Modules
          • Canberra Nim Modules
          • ORTEC Nim Devices

Categories

Recent Comments

  • Jay on Refurbishment of LN2 Dewars
  • Nitrous on Refurbishment of LN2 Dewars
  • Jay on ORTEC Nim Devices
  • CIP on ORTEC Nim Devices
  • Jim Reardon on ORTEC Nim Devices

Meta

  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org
© 2023   All Rights Reserved.