• NPL-Home
  • About Us
  • Accelerators
    • Betatrons
      • Plasma Betatron Coil Form: Design and Construction
      • Pulsed B-Dot Measurement
      • CW B-Dot Measurement
      • First Beam Attempts
    • Cyclotrons
      • 12-Inch Cyclotron
      • Axial Betatron Motion
      • Floating Wire Technique
      • 12-Inch Cyclotron Papers
    • DC Potential Drop
  • Experiments
    • Alpha Spark Detector
    • Diffusion Cloud Chamber
    • Wilson Cloud Chamber
    • Deuterated Target Preparation
    • Gamma-Gamma Coincidence
    • Measurement of excited Np237 half-life via the alpha-gamma coincidence method.
    • MUONS
      • Life & Times of a Muon
    • Neutrons
      • Neutron Detection with He-3
      • Neutron Induced Gamma Rays
      • Neutron Diffusion Time Measurement
    • Photography
      • AVCO Rotating Mirror
      • Dark Room
      • Rotating Drum Camera
      • Schlieren Photography
      • Fast Flash Photography
      • X-Rayted Photos
    • Rutherford Scattering
    • Thermoluminescence
  • High Voltage
    • Blue Thunder – An Electrolytic Cap Bank
    • Jacob’s Ladder
    • Krytrons
    • Marx Generator
    • Electric Watermelon
    • Quarter Crushing
    • Tesla Coils
      • Jay’s Tesla Coil
      • Variacs
  • History
    • Heisenberg Cube
    • The Kerst Collection
    • Koeth Collection – Consumer Products
    • Koeth Collection – Radiation Detection Instruments
    • Koeth Collection – Reactors & Weapons
    • Koeth Collection – Games & Collectables
  • Plasma
    • Fusors
      • FUSOR I
      • FUSOR II
      • Scott’s Fusor
      • Fusor Simulations
    • The Mirror Machine
    • Pinch Machines
      • Linear Pinch
      • Toroidal Pinch
      • Pinching
  • Spectroscopy
    • Alpha Particle Spectroscopy
    • Gamma Ray Spectroscopy
      • HPGe Gamma Ray Spectroscopy Education
      • HPGe Systems
      • Cosmogenic Be-7
      • Trinitite
      • Autunite
      • NAS Wildwood Mystery
      • Tc-99m : Cardiac Stress Test
    • Software & Hardware
      • Amateur Canberra Spectroscopy System
      • Antique MCA
      • DIY Matlab MCA
      • NIM Modules
        • Canberra Nim Modules
        • ORTEC Nim Devices
      • Refurbishment of LN2 Dewars
  • Search Icon

NPL

Nuclear Physics Lab

NPL
Pulsed B-Dot Measurement

Pulsed B-Dot Measurement

Author: Tim

After construction of the betatron coil form it was necessary to verify the field profile.  Because of the few number of windings it was impossible to energize the coils with a sufficient  DC current so as to perform a typical Hall Probe raster scan.  A pulsed current method of measuring was needed.  The actual betatron pulsed power supply would then also suffice for energizing the measured field. 

Two B-dot probes were designed. The first version only had 8 pickup coils, each spaced 0.760 inches apart with a total of 100 turns.  This turned out to be too coarse a spacing and much too sensitive with 100 turns each – nearly generating 1000 volts during a modest field pulse.  A second B-dot probe was developed with 0.500 spacing and 16 coils of only 20 turns which produced a more reasonable voltage. 

Because of the high density of leads in the second B-dot probe a second, signal fan-out board was necessary, a short ribbon cable interconnects the two.  The B-dot board was populated with 16 pickup coils. The data acquisition included four four-channel 100 MHz oscilloscopes for a total of 16 channel of digitization.  This was adequate as the 16th coil measured to a radial distance of 190mm more than encompassing the designed equilibrium orbit at 114mm. 

Because the measurement campaign was to include 16 channel per shot, and at least 10 shots per increment of vertical former space, an automated data acquisition system was necessary for speed and reliably.  A USB-based MATLAB control and acquisition script was written to prepare all four of the oscilloscopes for measurement and perform the data collection post shot.

The following plot compares various pulsed B-Dot measurements to the expected field from simulation. The data is normalized to the location of the electron beam orbit. There is a large discrepancy between the simulated fields and the measured profile. Within the experimentally measured profiles there is disagreement too, and this will be the topic of another post.

Back
  • NPL-Home
    • About Us
    • Accelerators
      • Betatrons
        • Plasma Betatron Coil Form: Design and Construction
        • Pulsed B-Dot Measurement
        • CW B-Dot Measurement
        • First Beam Attempts
      • Cyclotrons
        • 12-Inch Cyclotron
        • Axial Betatron Motion
        • Floating Wire Technique
        • 12-Inch Cyclotron Papers
      • DC Potential Drop
    • Experiments
      • Alpha Spark Detector
      • Jay’s Diffusion Cloud Chamber
      • Tim’s Wilson Cloud Chamber
      • Deuterated Target Preparation
      • Gamma-Gamma Coincidence
      • Measurement of excited Np237 half-life via the alpha-gamma coincidence method.
      • MUONS
        • Life & Times of a Muon
      • Neutrons
        • Neutron Diffusion Time Measurement
        • Neutron Induced Gamma Rays
        • Neutron Detection with He-3
      • Photography
        • AVCO Rotating Mirror
        • Dark Room
        • Fast Flash Photography
        • Rotating Drum Camera
        • Schlieren Photography
        • X-Rayted Photos
      • Rutherford Scattering
      • Thermoluminescence
    • History
      • The Kerst Collection
      • Heisenberg Cube
      • Koeth Collection – Consumer Products
      • Koeth Collection – Radiation Detection Instruments
      • Koeth Collection – Reactors & Weapons
      • Koeth Collection – Games & Collectables
    • High Voltage & Pulsed Power
      • Blue Thunder
      • Jacob’s Ladder
      • Krytrons
      • Marx Generator
      • Electric Watermelon
      • Tesla Coils
        • Jay’s Tesla Coil
        • Variacs
      • Quarter Crushing
    • Plasma
      • Fusors
        • FUSOR I
        • FUSOR II
        • Scott's Fusor
        • Fusor Simulations
      • The Mirror Machine
      • Pinch Machines
        • Linear Pinch
        • Toroidal Pinch
        • Pinching
    • Spectroscopy
      • Alpha Particle Spectroscopy
      • Gamma Ray Spectroscopy
        • HPGe Gamma Ray Spectroscopy Education
        • HPGe Systems
        • Cosmogenic Be-7
        • NAS Wildwood Mystery
        • Autunite
        • Trinitite
        • Tc-99m : Cardiac Stress Test
      • Software & Hardware
        • Refurbishment of LN2 Dewars
        • DIY Matlab MCA
        • Amateur Canberra Spectroscopy System
        • Antique MCA
        • NIM Modules
          • Canberra Nim Modules
          • ORTEC Nim Devices

Categories

Recent Comments

  • Dr. Yngve von Spalden on Canberra Nim Modules
  • Jay on Canberra Nim Modules
  • Dr. Yngve von Spalden on Canberra Nim Modules
  • Jay on ORTEC Nim Devices
  • Garnet Hoyes on ORTEC Nim Devices

Meta

  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org
© 2025   All Rights Reserved.